1. 总体结构
redis的dict就是hash表,使用链式结构来解决key值冲突,典型的数据结构
结构体的定义如下:
typedef struct dictEntry { void *key; union { void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next;} dictEntry;typedef struct dictType { uint64_t (*hashFunction)(const void *key); void *(*keyDup)(void *privdata, const void *key); void *(*valDup)(void *privdata, const void *obj); int (*keyCompare)(void *privdata, const void *key1, const void *key2); void (*keyDestructor)(void *privdata, void *key); void (*valDestructor)(void *privdata, void *obj);} dictType;/* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */typedef struct dictht { dictEntry **table; //hash桶是一个指针数组,里面存放的是hash entry的指针类型,只需要(8字节*size)个连续内存不需要大量的连续内存 unsigned long size; //这个是hash桶的大小 unsigned long sizemask; //hash桶大小-1, **用hash**/sizemask来计算桶下标 unsigned long used; //当前这个dict一共放了多少个kv键值对} dictht;//一旦used/size >=dict_force_resize_ratio(默认值是5),就会触发rehash,可以理解为一个hash桶后面平均挂载的冲突队列个数为5的时候,就会触发rehashtypedef struct dict { dictType *type; void *privdata; dictht ht[2]; long rehashidx; /* rehashing not in progress if rehashidx == -1 */ unsigned long iterators; /* number of iterators currently running */} dict;
如下图所示:
2. API接口分析
2.1 创建
API接口函数:
- dictAdd(dict d, void key, void *val)
在d中增加一个k-v对,实现代码如下:
/* Add an element to the target hash table */int dictAdd(dict *d, void *key, void *val){ dictEntry *entry = dictAddRaw(d,key,NULL);//调用了内部函数 if (!entry) return DICT_ERR; dictSetVal(d, entry, val); return DICT_OK;}dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing){ long index; dictEntry *entry; dictht *ht; if (dictIsRehashing(d)) _dictRehashStep(d); //如果正在rehash进行中,则每次操作都尝试进行一次rehash操作 /* Get the index of the new element, or -1 if * the element already exists. 获取到hash桶的入口index*/ if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1) return NULL; /* Allocate the memory and store the new entry. * Insert the element in top, with the assumption that in a database * system it is more likely that recently added entries are accessed * more frequently. (译文:申请内存来存储一个新的entry结构,插入元素到头部, 这里的实现和一般的hash链式解决冲突的实现有点小不同,基于这样的假定:在数据库系统中,最近增加的entries越有可能被访问。 这里是把新插入的entry放到了链表头上,可以看上面的英文解释*/ ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; entry = zmalloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; ht->used++; /* Set the hash entry fields.*/ dictSetKey(d, entry, key); return entry;}/* Returns the index of a free slot that can be populated with * a hash entry for the given 'key'. * If the key already exists, -1 is returned * and the optional output parameter may be filled. * * Note that if we are in the process of rehashing the hash table, the * index is always returned in the context of the second (new) hash table. 这个原版注释写的很清楚,如果正在rehashing的时候,index返回的是new的hashtable*/static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing){ unsigned long idx, table; dictEntry *he; if (existing) *existing = NULL; /* Expand the hash table if needed ,判断hash桶是否需要扩大,这个地方是redis比较牛逼的地方, hash桶是动态扩大的,默认初始的时候只有4,然后每次乘2的方式进行扩展,如果扩展了,就需要进行rehash*/ if (_dictExpandIfNeeded(d) == DICT_ERR) return -1; /*获取索引的时候,如果正在rehash,需要两个hashtable都进行查询*/ for (table = 0; table <= 1; table++) { /*这个idx就是hash桶的下标*/ idx = hash & d->ht[table].sizemask; /* Search if this slot does not already contain the given key */ he = d->ht[table].table[idx]; while(he) { /*这里是必须遍历下冲突队列,保证key没有出现过*/ if (key==he->key || dictCompareKeys(d, key, he->key)) { if (existing) *existing = he; return -1; } he = he->next; } /*如果不在rehash的话,其实就没有必要再做查找的操作了,直接返回就好了*/ if (!dictIsRehashing(d)) break; } return idx;}
- dictEntry dictFind(dict d, const void *key) 根据key在d中寻找值,这个逻辑和add差不多,代码很简单,这里就不做解释了
dictEntry *dictFind(dict *d, const void *key){ dictEntry *he; uint64_t h, idx, table; if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */ if (dictIsRehashing(d)) _dictRehashStep(d); //和增加的时候逻辑一样,如果正在rehashing,则进行一步rehash h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; he = d->ht[table].table[idx]; while(he) { if (key==he->key || dictCompareKeys(d, key, he->key)) return he; he = he->next; } if (!dictIsRehashing(d)) return NULL; } return NULL;}
3. rehash过程
redis对于dict支持两种rehash的方式:按照时间,或者按照操作进行rehash。每次都调整一个key值桶内所有的冲突链表到新的hash表中。 rehash 代码如下:static void _dictRehashStep(dict *d) { if (d->iterators == 0) dictRehash(d,1);}/* Performs N steps of incremental rehashing. Returns 1 if there are still * keys to move from the old to the new hash table, otherwise 0 is returned. * * Note that a rehashing step consists in moving a bucket (that may have more * than one key as we use chaining) from the old to the new hash table, however * since part of the hash table may be composed of empty spaces, it is not * guaranteed that this function will rehash even a single bucket, since it * will visit at max N*10 empty buckets in total, otherwise the amount of * work it does would be unbound and the function may block for a long time. */int dictRehash(dict *d, int n) { int empty_visits = n*10; /* Max number of empty buckets to visit. */ if (!dictIsRehashing(d)) return 0; while(n-- && d->ht[0].used != 0) { dictEntry *de, *nextde; /* Note that rehashidx can't overflow as we are sure there are more * elements because ht[0].used != 0 */ assert(d->ht[0].size > (unsigned long)d->rehashidx); while(d->ht[0].table[d->rehashidx] == NULL) { d->rehashidx++; if (--empty_visits == 0) return 1; //redis为了保证性能,扫描空桶,最多也是有一定的限制 } de = d->ht[0].table[d->rehashidx]; /* Move all the keys in this bucket from the old to the new hash HT ,这个循环就是开始把这个rehashidx下标的hashtable迁移到新的下标下面,注意,这里需要重新计算key值,重新插入*/ while(de) { uint64_t h; nextde = de->next; /* Get the index in the new hash table */ h = dictHashKey(d, de->key) & d->ht[1].sizemask;//重新计算key值,重新插入 de->next = d->ht[1].table[h]; d->ht[1].table[h] = de; d->ht[0].used--; d->ht[1].used++; de = nextde; } d->ht[0].table[d->rehashidx] = NULL; d->rehashidx++; } /* Check if we already rehashed the whole table...,一次操作完了,可能这个hashtable已经迁移完毕,返回0,否则返回1 */ if (d->ht[0].used == 0) { zfree(d->ht[0].table); d->ht[0] = d->ht[1]; //现在的0变成1 _dictReset(&d->ht[1]); //现在的1被reset掉 d->rehashidx = -1; return 0; } /* More to rehash... */ return 1;}